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Measurement error, or reliability, affects many common applications in statistics, such as corre-
lation, partial correlation, analysis of variance, regression, factor analysis, and others. Despite its
importance, the role of measurement error in these familiar statistical applications often receives
little or no attention in textbooks and courses on statistics. The purpose of this article is to exam-
ine the role of reliability in familiar statistics and to show how ignoring the consequences of (less
than perfect) reliability in common statistical techniques can lead to false conclusions and
erroneous interpretation. ’

Keywords: reliability; statistics; inference; interpretation

Measurement error is an integral part of measurement and is frequently indexed by reli-
ability. The reliability of a measure is the ratio of true variability to total variability. In
simple nontechnical language, reliability means precision. Most educational researchers and
psychologists learned about reliability in courses in psychometrics. Statistical techniques
such as descriptive statistics, regression, or analysis of variance are taught in separate
courses. In some instances, the two are combined, such as when Spearman’s true correlation
is introduced; this, however, is frequently the only time. More recently, courses covering
meta-analytic techniques frequently bridge that gap. The purpose of this article is to show the
role of reliability in familiar statistics and to show how ignoring the consequences of (less
than perfect) reliability in common statistical techniques can lead to false conclusions and
erroneous interpretation. Because of their widespread use in applied research and applica-
tion, we will illustrate the role of reliability with examples from descriptive statistics, z tests
and ¢ tests, correlation, partial correlation, linear regression, test bias analysis, factor
analysis, analysis of variance, and analysis of covariance.

Authors’ Note: The opinions expressed are those of the authors and are not necessarily those of the U.S. govern-
ment, the Department of Defense, or the U.S. Air Force. Please address correspondence to Malcolm James Ree,
Our Lady of the Lake University, 411 SW 24th Street, San Antonio, TX 78207-4689; e-mail: mree @satx.rr.com.
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Measurement Error Model

The true score model is the most frequently used measurement error model (see Fuller,
1987). In this model, the basic equation states that the observed score is equal to the true score
plus an error score. Furthermore, the error score is assumed to be random and therefore inde-
pendent of the true score. The true score and error score are not correlated. If the error score is
not random, the result is called bias and the consequences may be situationally specific.
There are measurement models for nonrandom error, but the current article is limited to ran-
dom error. The basic true score equation is O =t + e, or Observed = True + Error.

This yields'

2 2 2
oobserved +cu'uc +Gcn’or' (1)

By definition, reliability (Stanley, 1971) is the ratio of true score variance to observed
score variance or reliability = ry, = 6%,/0%,,. This is equivalent to ryy = 1 — (0%,,/0%), OF
reliability equals 1 minus the proportion of error variance to observed variance. The effects of
measurement error on familiar statistical techniques can be determined from these equations.
The purpose of the current effort is to explain the consequences of the use of less than per-
fectly reliable measures in statistical analyses.

The Variable Is Not Reliable

It is not unusual to hear people say, “That test is reliable” or “That is a reliable measure” of
some construct. However, Thompson (2003) has forcefully made the point that a test (or
other measured variable) is neither reliable nor unreliable. Reliability concerns the scores of
the measure and is a consequence of the sample at hand. “It is important to evaluate score reli-
ability in all studies, because it is the reliability of the data in hand that will drive study
results, and not the reliability of the scores described in the test manual” (Thompson, 2003,
p. 5). Your sample will almost surely differ from the normative sample reported in the test
manual. It may differ in composition by gender, ethnicity, age, experience, education, testing
circumstances, or many other variables. These differences will cause the reliability of your
sample to be different from the reliability reported in the manual, and your results will be
driven by the reliability of your sample.

Descriptive Statistics |

Mean

The effect of unreliability on the mean is benign. Because the error score is random, the
mean of the error score is expected to be zero. Therefore, the expectation of the observed
mean equals the true mean. The bias caused by measurement error on the observed mean
is nil.
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Variance and Standard Deviation

The effects of measurement error on the variance and standard deviation are not so agree-
able. Returning to the true score equation, we see that the observed variance is the sum of the
true and error variances (0% = Olme + Omor). Consequently, the observed variance is
greater when error increases. Observed score variance is always greater than true score vari-
ance when the variable has been measured with less than perfect reliability. If the true vari-
ance (6%,,.) is 100 and the error variance (6%, is 10, the observed variance (57,) will be 110.
If the true variance remains 100 and the error variance is 20, the observed variance will be
120. Note that the effect on the standard deviations will appear to be less at 10.49 (Jil_O) and
10.95 («/1—2-5). In these cases, the reliability of the two scores would be .91 (6°,,/07,,, = 100/

110) and .83 (6°,,/0%,, = 100/120), respectively. The biasing influence on effect size will be
discussed in a subsequent section.

The z Test and the ¢ Test

The basic form of the z test and the ¢ test is a sample statistic minus a population parameter
in the numerator, divided by a standard error in the denominator. In the case of the z or ¢ test of
amean, the benign effect on the mean precludes changes in the numerator. The effect of reli-
ability is found in the denominator. The standard error (or estimated standard error in the ¢
test) is the standard deviation divided by the square root of n, the sample size.

Consider the two-sample (or independent-samples) two-tailed z test using a .05 Type 1
error rate. With a difference between the means of 3.6, a sample size of 30, and a true standard
deviation (i.e., measured without error, r,, = 1.0) of 10, the computed z value would be signif-
icant at 1.972. If the standard deviation were increased to 11 by unreliability (r,, = .83), the z
test statistic would not be significant with a value of 1.793. If the reliability were reduced fur-
ther, the z value also would be reduced. For example, with the same sample size and mean dif-
ference, but reliability reduced to r,, = .625 (observed standard deviation = 16), the z value is
1.232 and would not be significant.

Confidence Intervals

Another way to evaluate the effects of unreliability is to look for differences in the width of
confidence intervals. Addition of error variance to true variance causes the confidence inter-
vals to increase. With a sample size of 30 and a true standard deviation of 10, when the reli-
ability is 1.0, the true standard error is 1.826. If the reliability were reduced to .830 or to .625,
the standard errors become 2.008 and 2.921, respectively. The confidence interval becomes
wider.

Effect Size

Less than perfect reliability also will have an influence on effect size ((i, — W,)/c,) (see
Baugh, 2002, for an insightful discussion of the issue). Russell and Peterson (2002) reported
the effect size for African American means versus White means on a series of tests in a
research project. They discuss a spatial test called Reasoning, which had an effect size of .77.
Russell and Peterson noted that many tests show an African American versus White effect
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size of 1.0, and their experimental tests were on average less than 1.0. The Reasoning test had
atest-retest reliability of .65, and correcting the effect size for this unreliability, the true effect
size becomes .96, very close to the size reported frequently for such differences. This change
in effect size occurred because of the change in the estimate of the standard deviation when
unreliability was accounted for. A different conclusion about the Reasoning test would have
been reached had unreliability been taken into account. ‘
Clearly, unreliability causes a reduction in statistical power, an artifactual increase in con-
fidence intervals, and a bias in estimating effect size. Ignoring the effects of unreliability will
lead to inappropriate conclusions and inferences about the tests and the constructs being
studied.

Correlation

With the increased popularity of the meta-analytic technique of validity generalization
(Hunter & Schmidt, 1990, 2004), the correction for attenuation has become well known
again, at least by industrial/organizational psychologists (see Ree & Earles, 1993). Spearman
(1904) demonstrated that the correlation between the observed scores of two variables was a
function of the reliability of the two variables. The well-known formula that expresses this is

N ol o) ®

where r, is the estimate of the true correlation (sometimes written .., where 1 indicates true
score), r,, is the observed attenuated correlation, and 7, and r,, are the reliabilities of X and Y,
respectively.

For example, if two measures of the same construct (true score correlation of 1.0) each
have areliability of .8, the maximum correlation between the two (ryy) is .8. If one of the mea-
sures has a reliability of .6 and the other .8, the maximum observed? correlation would be .69.
Ignoring the consequences of reliability of the measures, the conclusion would be that there
is a moderate to strong correlation rather than the perfect correlation obtained at the true
score level. A practical consequence of this might be the search for new predictors to close
the (specious) gap between .69 and 1.0.

Observed correlations can be corrected for the unreliability of the variables by using an
algebraic manipulation of Equation 2 to yield

re = ey | (Jrege AT ). 3)

Consider an observed correlation of .72, where both variables X and Y have reliabilities of .8.
Using the equation above for correcting the correlation, the true correlation between X and Y

is .9. That is, r, = .72/(\'8 x/8) = 9.

Correlations between variables that change from low or moderate to moderate or high
after correction for (less than perfect) reliability suggest that the variables’ utility could be
improved if they were made more reliable. In addition, low to moderate correlations that do
not increase in magnitude after correction for unreliability suggest that the variables contain
other sources of variance.
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Partial Correlation

Partial correlation is the correlation between two variables, X and ¥, while holding a third
variable, Z, constant. Whether used for control or for selecting variables for stepwise regres-
sion, the role of reliability in partial correlation can be large. Consider the following example
with three variables, X, ¥, and Z, which measure the same construct with perfect reliability.
The true correlation between X and ¥, X and Z, and Y and Z would be 1.0. The partial correla-
tion between any pair holding the other constant (i.e., partialing it out) would be .0. If the reli-
ability of all measures were .8, the partial correlation can be given as .44.

ro= Ty (8) =1y, (8) 1, (8)
’ Jl—(rxz x 8)? \ﬁ—rn x 8)?

Note that the value goes from no partial relationship (.0) to a moderate (.44) partial relation-
ship. This is a big difference and might have substantial implications for theory, application,
and policy. Caution is urged in interpretation.

If Z were a variable used for control by partialing it out, its reliability would be influential
in the estimation. For example, researchers partialed out age (Z in this example) to estimate
the true correlation between leg length (X) and running speed (¥). Suppose that age (Z), the
variable to be partialed out, had a reliability of .4 and the triad of correlations among X, ¥, and
Z was truly 1. The observed partial correlation between leg length (X) and running speed (¥)
would be .29 rather than .0. The observed correlation of .29 is a poor estimate of the true cor-
relation, and the researcher would make erroneous conclusions about the relationship
between the variables.

Linear Regression Coefficients

Simple Linear Regression With One Predictor

Consider a simple linear regression of ¥ on X. In the explanation of this regression, many
statistics texts contain a single line such as “it is assumed that alt predictors are fixed variables
measured without error.” The role of measurement error in estimation of raw score regression
weights, b, is given by

b=0ry “
and for the regression constant (or intercept), we have

a=Y-(blrg)X. (5)

In the case of a one-predictor regression, the effect is direct and easy to understand. The b
coefficient is biased toward zero, and the a coefficient is inflated. They are biased estimates of
the population parameters. Unreliability in the criterion has no biasing effect on the regres-
sion coefficients; however, it does attenuate the correlation between the predictor and crite-
rion. There is a simple method to correct these biased estimates. The b coefficient is divided
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by the reliability of the predictor variable, and this b coefficient is then placed in Equation 5
for the intercept.

Suppose job performance criterion Y is regressed on test X, yielding the regression equa-
tion ¥ = 2.0 + 1.6X and that the reliability of test X is .80. Correcting the b coefficient gives
(1.6/.8 =2), and assuming means of 5 for the X variables and 10 for the Y variables, correcting
the intercept gives 10 — 2(5) = 0. The corrected regression equation is ¥ = 0 + 2X.

Multiple Regression

When there are multiple predictors, the effects on the regression coefficients become com-
plex and difficult to specify simply. The effect of reliability is a function of the reliability
magnitudes and the true score correlations among the predictors. Unreliability in the crite-
rion has no biasing effect on the regression coefficients; however, it does attenuate the multi-
ple correlations between the predictors and criterion. Aiken and West (1991) provided an
instructive example for the case of two independent variables, X and Z, used to predict the cri-
terion Y. In this case, the standardized regression weight being estimated is the partial regres-
sion coefficient of Y on X holding out the effect of Z. The effect of the unreliability of the vari-
able being partialed out has a substantial effect on the partial regression coefficient of the
other variable. Even if one independent variable in a regression were measured with perfect
reliability, the unreliability of the other independent variables will have a biasing effect on the
regression coefficient associated with the independent variable measured without error. The
standardized regression coefficient is given by

byxz=(ryx = ryzrxd (1 - ryz). : 6)
To correct this equation for unreliability of variable Z, it is necessary to write it as
cbyxz = (rxrzz = Tl (1 — 1) @)

For example, if X is measured without error, the reliability of Zis .64, and ryx = ry; = ry; =
.5, the corrected standardized coefficient is

Chyy A(5 X .64) — (S x.5NN(1-.5)=.07/.5=.14.
The two-variable case can be extended to the case of many independent variables.

Interpretation of Regression Coefficients

The failure to include reliability in the interpretation of the regression equation causes
problems in several ways depending on the use made of the regression equation and its coeffi-
cients. The first is in the interpretation of the relative importance of the constructs related to
the predictors. Frequently, researchers compare weights and derive meaning of the relative
importance of the constructs represented by the observed variables such as verbal or mathe-
matical ability. The uncorrected regression weights are not dependable indicators of the
importance of the independent variables; therefore, interpretation of them can lead to
erroneous conclusions.

Consider an aptitude test with three equally reliable measures representing reading skill,
mathematics knowledge, and space perception. Furthermore, the source of validity is limited
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to the common first factor (i.e., g) underlying each test in the battery and no validity, in this
example, is due to the specific measurement (i.e., s) of each test. Under these conditions, each
test should have the same regression weight when used in a regression equation to predict the
criterion. However, if there are differences in test reliabilities, the regréssion coefficients will
vary differentially from their true population values. Suppose these three example tests have
reliabilities of .65, .70, and .85, respectively. In estimation, the three regression coefficients
will differ because of their reliability. For example, if the three uncorrected regression coeffi-
cients were .195, .210, and .255, some might interpret this to mean that space perception is
1.3 times (.255/.195) as important as reading skiil. In reality, the only difference is in the
reliability of the measures.

In his computer programs called “Package,” John Hunter (personal communication,
May 1, 1995) has a regression procedure that allows for explicit correction for unreliability
and corrects the regression coefficients.

Even if the reliability of the measures starts out the same, prior selection leads to reduction
of reliability in the sample. Prior selection refers to the process of selecting a sample using
some method, such as minimum qualification scores, that changes the variability of the
scores in that sample. Gulliksen (1950, 1987, p. 124, Equation 5) provides the following
equation to show the relationship between prior selection and reliability.

R, =1—(s3 1 S)1=ry). @®

Consider the previous example with the three tests in which the sample has been selected
on the basis of scores on the reading skill test, which has caused indirect selection
(Thorndike, 1949) to occur on the mathematics and space-perception tests. This indirect
selection is the result of the correlation of the variables. Given the same true regression coef-
ficients and reduction in variance of 50%, 30%, and 20%, respectively, for reading skill,
mathematics, and space perception, the reliabilities of the tests have changed differentially.
The regression coefficients thus become differentially biased and poor estimates of the popu-
lation values. Some would interpret these coefficients, and clearly, erroneous conclusions
would be drawn. ‘

Another use of regression coefficients is in production of individual job-specific regres-
sion equations for personnel classification. Johnson and Zeidner (1991) have called for the
use of linear programming to achieve optimal assignment of individuals to jobs by such sys-
tems. When the regression coefficients are computed in several range-restricted samples of
job incumbents, the prior selection of the job incumbents causes the reliabilities of the tests to
vary from sample to sample (Gulliksen 1950, 1987, p. 124, Equation 5). These varying
reliabilities cause biases in the regression coefficients. In addition, the effect of the potential
removal of homoscedasticity because of range restriction induced by prior selection also
biases the regression coefficients. When samples are preselected and homoscedasticity is
maintained, the regression coefficient in the selected sample will not show bias due to
heteroscedasticity (Cohen & Cohen, 1983). The benefits of the use of these biased coeffi-
cients in optimization (Johnson & Zeidner, 1991) may be illusory and due to nothing more
than the reliability artifact.

Any technique that uses regression coefficients such as clustering, profile analysis
(Nunnally & Bernstein, 1994) or policy capturing (Ward & Jennings, 1973) must take the
unreliability of the variables into account or inappropriate inferences will be made.
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Test Bias Detection

Jensen (1980, pp. 383-386) and others (Cohen & Cohen, 1983; Crocker & Algina, 1986;
Fuller, 1987) have shown that less than perfect reliability can influence the interpretation of
models of test bias that rely on examination of regression slope, intercept, and standard error
of estimate. What may be mistakenly interpreted as test bias may in fact be due solely to unre-
liability. As Jensen noted, “Before concluding that a test is intrinsically biased, it should be
determined how much of the apparent bias is attributable to the unreliability of the test” (p.
383). :

Test unreliability disadvantages high-scoring individuals, regardless of their group (e.g.,
ethnicity/race, gender, socioeconomic) membership. Therefore, any group with proportion-
ally fewer high-scoring members will benefit (as a group) from a test’s unreliability. As noted
by Jensen (1980), Hunter and Schmidt (1976, p. 1056) suggested that test unreliability by
itself might account for half of the overprediction of grade point average for Blacks reported
in the literature.

In an unbiased test with perfect reliability, by definition, the slope, intercept, and standard
error of estimate are the same for the groups being compared. Through several illustrative
examples, Jensen (1980) showed that even in an unbiased test, unreliability reduces the
regression slope, produces group differences in the Y intercept, and increases the standard
error of estimate.

Regression Slope

In a perfectly reliable test, the observed slope will be by When reliability is less than 1, the
slope becomes ry,by,. If the reliability of the test were zero, the regression line would be hori-
zontal (no slope). There is no group-difference effect of test unreliability on the slope, unless
the reliabilities differ in the two groups.

Regression Intercept

Interpretation of regression intercepts is hazardous when the predictor is not perfectly reli-
able. Jensen (1980) showed that if the test’s reliability is less than perfect and there are two
groups and a single regression line, there must be two intercepts found solely because of the
unreliability of the predictors. The difference in intercepts for the two groups will increase by
an amount equal to A(k, — k;) = by (1 - rxx)()_(,, - )_(B), where k, and k; are the intercepts for
groups A and B and X, . and X, are the means. Furthermore, by, is the raw score regression
coefficient for the regression of Y on X, and ry, is the reliability of predictor X. The expected
difference in intercepts is a function of group means, regression coefficient, and predictor
reliability. For example, if the regression coefficient were 1 and X, and X, were 10 and 5 for
a test (X) with reliability of .9, the expected difference in intercepts would be 0.5. If the reli-
ability were decreased to .7, the expected difference in intercepts would increase to 1.5. If the
reliability decreased further to .5, the expected intercept difference would increase to 2.5.
The nature and magnitude of the artifact is made clear when we contrast this to the circum-
stance in which reliability is perfect and a zero difference in intercepts is found. The uncriti-
cal interpretation of different intercepts as bias is unwarranted.
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Standard Error of Estimate

Test unreliability increases the standard error of estimate (SE,) by an amount equal to
ASE,. =0, (\/1 ~(ryrg )Jl - r2,). Test unreliability increases the amount of overlap of
the distributions of the predicted criterion scores for the two groups being compared. Finally,
test unreliability decreases the standard deviation of the predicted criterion, ¢, =0, M ,

by an amount equal to AG, = ((1-1-r2 )G, ).

An Example of Corrected Test Bias Detection Analyses

Carretta (1997) provided a practical example in a study of gender and ethnic group differ-
ences in the predictive utility of aptitude composites used to select U.S. Air Force pilot train-
ees. Uncorrected results showed group differences in predicted pilot training completion
rates with overestimation for the minority group (women = .07 and Hispanics = .12) relative
to the majority group (men and Whites). After correction for unreliability of the predlctors
all differences were reduced to a trivial .0004 or less.

Validity Coefficient

Test unreliability reduces the validity coefficient for both groups by an amount equal to
Aryy =(J1= 1k 1y ). In addition, test unreliability increases the amount of overlap of the
distributions of the predicted criterion scores for the two groups being compared. Finally, test
unreliability decreases the standard deviation of the predicted criterion, 6, =6, /72, , by an

amount equal to AG, =(y/1-7ZG,).

A particularly interesting sitbation occurs in the tests of predictive bias (Cole, 1973) using
regression models (Lautenschlager & Mendoza, 1986). Usually the first test of models in
the detection of bias is a comparison of a four-parameter regression model against a two-
parameter model. The two models tested are

P=a,+bS+b,X+b,XS ' )
and
Y=a,+bX (10),

where X is a test score, S is a categorical variable (often called a dummy variable) of 0 and 1
denoting group membership, and XS is the cross-product of X and S. Note that X§ has a pecu-
liar distribution, with zeros for the group coded 0 and test scores for the group coded 1. In the
first model, a, and b, are intercepts and b, and b, are slopes. In the simpler model, a, is the
intercept and b, is the slope. The first regression model can provide two lines; the second
regression model can provide only one line. Frequently, the two groups considered have a
mean score difference of 16. Consequently, the test has a different reliability for each group,
and depending on the placement of the minimum cut score, the reliability may be made to dif-
fer further between the groups after selection. The effects of unreliability in the full model are
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more difficult to specify than in the reduced model, and comparison of the models in the pres-
ence of measurement error may lead to inappropriate inferences in the population.

Factor Analysis

The role of reliability in factor analysis is well known and generally straightforward. The
general model of factor analysis is that the variance of the observed variable is a linear combi-
nation of common factors and unique factors. The ratio of the variance associated with the
common factor to the total variance of an observed variable is known as the communality of
the observed variable (Fuller, 1987, pp. 60-61). Using Fuller’s notation, communality can be
written as

2 12 -ln2 — -1 -
kn =[B110u +0uu] Blloxx =1_GYY110eeII' an

This quantity k7, the communality, is an estimate of the reliability of the variable. The
- communality of a variable provides a lower bound estimate of its reliability (Baggaley,
1964). It is a lower bound estimate because it does not include the reliable variance measured
by specific factors. The unique variance or uniqueness of a variable is (1 —communality). The
unique factors are composed of specific variance and error variance. Symbolically, these
relationships can be expressed as

X=h+u (12)
or
X=h+s+e, ’ (13)

where X is an observed variable, A is the commonality, u is the uniqueness, s is the specific,
and e is the error.

If the variable is associated with the factor, as the reliability of the observed variable
increases and the error decreases, the loadings of the variable on the factors can be expected
to increase. For example, if there are three variables that have true loadings that are equal but
are measured with differing reliability, the observed loadings will differ as a function of the
reliability, with the more reliably measured variables receiving higher loadings.’ Interpreta-
tions of these observed loadings will lead to erroneous conclusions about the factorial causa-
tion of the variables because the differences are due to differing reliabilities and not differing
relationships to the factor. To correct factor loadings for unreliability, the loadings for the
observed variables can be divided by the reliability of the observed variables. These cor-
rected loadings give more appropriate estimates of the true relationships of the factors to the
observed variables. v ‘

Ree and Carretta (1998) reported a study that showed the correlation between the
unrotated first-factor loadings of multiple aptitude battery* scores and average validity of
those scores. The correlation was .76. The factor loadings were then corrected for unreliabil-
ity, and the correlation became .98.
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Analysis of Variance (ANOVA) and
Analysis of Covariance (ANCOVA)

ANOVA and ANCOVA are examples of the linear model as is regression analysis. The
effects of measurement error are similar; however, the independent variables in ANOVA are
usually uncorrelated owing to random assignment of participants. As stated above, the
effects of unreliability on uncorrelated independent variables are simpler.

ANOVA

Let us consider a one-way ANOVA with three levels of the independent variable with p,,
W, and pt,. Remembering that ANOVA is a linear model and that the parameter estimates can
be found by means of regression, we note that i, = ol + B, b, = &t + 8, and u, = o, where o is
the regression additive constant (intercept) and §, and 3, are the multiplicative partial regres-
sion coefficients for the two categorical variables needed to represent the three levels of the
independent variable. Furthermore, note that o=, B, =, — 1, and B, =, — L. Suppose |4, =
+1, W, =0, and 1, = -1 and that the reliabilities r,,, = r,, = r,,, =.50. The true differences are 1
or 2 points, but there is a loss of statistical power. In addition, the effect size (e.g., (1, — 1,)/G)
may be substantially underestimated because ¢ is inflated by error variance. Much the same
may be found in an N-way ANOVA. Consider a two-way ANOVA with the independent vari-
ables of gender and political party affiliation. There are two gender (male/female) and three
political affiliation (Democrat, Independent, and Republican) levels, respectively. Using the
same logic as before, the group means may be represented as follows:

Gender Political Affiliation Group Means

Female Democrat M =0+ Py +Bs
Independent Hp=o+B,+ B3
Republican Pp=o+ s

Male Democrat Mt =00+ By
Independent Hm =0+ B,
Republican U3 = O

Again, both statistical power and effect size may be reduced. If the two independent vari-
ables above are correlated, as they well may be given the impossibility of randomly assigning
gender and party affiliation, the same biases will be found as in a multiple regression with cor-
related predictors. With less than perfectly reliable variables, the results can be very
misleading.

An instructive example is provided in the work of Guttman (2000) in a study of 16- to 40-
year-old females. Independent variables for the analysis of variance were based on meeting
the criteria in the Diagnostic and Statistical Manual of Mental Disorders (3rd ed., revised,;
American Psychiatric Association, 1987) for the clinical conditions of anorexia nervosa and
borderline personality disorder. The control participants were admitted to the study on three
less than perfectly reliable self-report clinical instruments. Of particular interest were the
dependent variables assessed by a 28-item measure of an individual’s cognitive and emo-
tional capacity for empathy. This instrument yielded four scales whose median reliability
was reported by Guttman to be about .70. The DSM-III-R assessments have less than perfect
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reliability, and .6 is a reasonable approximation of the reliability of the categorization into the
anorexic and borderline personality groups. Given the magnitudes of less than perfect reli-
ability in both the independent and dependent variables, it is likely that all effect sizes were
underestimated and many significant differences were undetected.

3

ANCOVA

ANCOVA is a linear model with categorical variables and at least one continuous variable
as a covariate. For example, suppose we were interested in examining the effects of political
party affiliation, a three-level categorical variable (Democrat, Independent, and Republican)
and annual income measured in dollars earned (a continuous variable) on amount of support
for the president’s proposed budget (a continuous variable). The three levels of party affilia-
tion are represented by two categorical independent variables (X, and X,). Income level (X;) is
the continuous covariate independent variable. The following linear model represents the
relationship of party affiliation and income to the dependent variable, support for the presi-
dent’s budget (Y):

Y=o +B.X; +B.X, + B:X. | (14

Considering less than perfect reliability of the independent variables, the equation can be
rewritten as

Y =0/ 4 1B, X, + rpBoX, + riuX;, ‘ 15)

where ry;, 7, and r,; are reliabilities and o denotes the additive regression coefficient
affected by the unreliability of the independent variables.

The effects of less than perfect reliability will be found and the higher the correlation
between the covariate X; and the independent variables X, and X,, the more bias will be noted
in the analysis and the greater the loss of statistical power. The same biases will be found as
would be found in a multiple regression with correlated predictors.

Ameliorating or Correcting the Problem

In each of the cases we reviewed, it has been shown that using less than perfectly reli-
able variables creates bias in the parameter estimates. This reduces statistical power and pro-
vides the opportunity for misinterpretation of findings and misstatement of fundamental
relationships.

There are several ways to ameliorate or correct this problem. The first approach is to use
variables that yield highly reliable scores for your sample (see Ree, Carretta, & Steindl,
2001). Revising unreliable test items or observational techniques, adding test items or obser-
vations, revising vague or confusing instructions, and clarifying ambiguous scoring and cod-
ing procedures can accomplish this. This alleviates most of the problems but does not entirely
remove the bias due to unreliability. A second approach is to correct the observed variables
for the effects of unreliability and conduct the analyses on the corrected values. This can be
accomplished with reliability estimates from the participant sample in the study. Finally, the
use of latent variable analyses, such as confirmatory factor analyses or structural equation
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modeling, which eliminate or substantially reduce the unreliability of the variables, is a third
worthwhile approach.

Cohen and Cohen (1983, p. 411) reported that Dunivant (1981) conducted simulation
studies to evaluate the last two approaches and concluded that both “have merit and yield rea-
sonable results.” Unreliability poses a threat to our knowledge and practice, whether in theo-
retical studies or in practical application. Baugh (2002) expressed it well, stating, “As the
winds of change continue to shape responsible research practice, it is hoped that researchers
will give more thoughtful consideration to the influence that measurement error variance
exerts” (p. 261).

Notes

1. We follow the convention of using Greek letters for population parameters and Roman letters for sample sta-
tistical estimates of population parameters. Equation 1 is the single exception to this rule as many are familiar with
the equation when written as presented.

2. Due to sampling error, the observed correlation could take on numerous higher values. We present the maxi-
mum expected observed correlation.

3. We noted a similar finding for regression coefficients in the section on multiple regression. In factor analyses
of test items or questionnaire items, it may be difficult to estimate the reliability of items.

4. The unrotated first factor of a multiple aptitude battery is a measure of general cognitive ability (g).
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